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SUMMARY

A ®nite element model of dendritic solidi®cation of multicomponent alloys is presented that includes solutal
convection and is an extension of a previously developed model for solidi®cation of binary alloys. The model is
applied to simulation of the solidi®cation of ternary and quaternary Ni-based alloys. The role of solutal
convection in the macrosegregation and the formation of freckles is analysed. Calculations show the effects of
geometry and material properties on the convection patterns and the attendant segregation. # 1998 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

The demand for higher performance of gas turbines over the last several decades has prompted the

development of new alloys and processes to achieve components resistant to creep at increasingly

higher working temperatures.1 The directional solidi®cation of dendritic monocrystals has become

the method of choice in casting turbine blades for high-temperature applications. In this process the

casting is cooled from below in a vertically imposed temperature gradient in order to achieve a h1 0

0i orientation of the primary dendritic arms. However, the process is complicated by the onset of

convection in the liquid phase, which can cause severe macrosegregation in the castings. A common

defect is known as `freckles', which are long, narrow streaks usually oriented parallel to the direction

of gravity in the castings.2 Their composition can vary signi®cantly from that of the surrounding

material, thus making the interfaces prone to the onset of fatigue cracking. The castings with freckles

are scrapped.

The origin of freckles can be traced directly to the effect of solutal convection in the melt during

directional solidi®cation. Even though thermal convection may not occur in the process because the

temperature pro®le is gravitationally stable, the rejection of a solute species lighter than the solvent at

the solidifying interface can produce strong convection in the liquid, which leads to the formation of
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channels in the mushy zone and eventually freckles in the solidi®ed casting. The dynamics of the

process has been observed in transparent aqueous ammonium chloride solutions, which solidify in an

analogous way to metals.3,4

Early numerical simulations to predict macrosegregation in alloys considered only convection in

the mushy zone,5±7 which was treated as a simpli®ed porous medium. Formulations that incorporated

solutal convection using the plane front assumption came next;8,9 they could model convection in the

liquid due to the rejection of solute at a planar solid±liquid interface. The ®rst numerical models

capable of simultaneously simulating convection in the all-liquid and mushy zones in binary alloys

appeared next.10±15 The extension of these models to multicomponent alloys has been accomplished

only recently.16±18 These models require a computational approach different from that for binary

alloys because knowledge of the temperature in the mushy zone does not automatically provide a

unique composition of the interdendritic liquid. Furthermore, the multicomponent nature of

solidi®cation can lead to convection and segregation patterns not previously observed in binary

systems.

In this work we present a ®nite element model for the two-dimensional simulation of directional

solidi®cation of multicomponent alloys. We report on simulations performed for three- and four-

component alloys and show how solutal convection affects the solidi®cation process. We emphasize

the effect of different modes of convection in the melt on the formation of freckles.

2. MATHEMATICAL MODEL OF SOLIDIFICATION

The model for the solidi®cation of multicomponent alloys is an extension of the model for binary

alloys previously developed by the authors.15 A set of equations of conservation of mass, energy and

solute concentration is solved in conjunction with the momentum equations for ¯uid ¯ow. This is

commonly known as a continuum model. The mushy zone is treated as a porous medium of variable

porosity (i.e. volume fraction of liquid). The fraction of liquid varies from zero (all-solid region) to

one (all-liquid region) in such a way that, when the volume fraction of liquid is zero, no ¯uid motion

is possible and the system reduces to the energy equation. When the volume fraction of the liquid is

one, the equations automatically become the Navier±Stokes and transport equations for an all-liquid

region. The main assumptions used in the development of the governing equations are as follows.

1. Only solid and liquid phases may be present. No pores form.

2. The liquid is Newtonian and incompressible and the ¯ow is laminar.

3. The solid and liquid phases have equal and constant physical properties.

4. There is no solute diffusion in the solid phase.

5. The Boussinesq approximation is made.

6. The solid phase is stationary.

Some further assumptions will be made at the appropriate places in the paper.

With the above simpli®cations the governing equations become

continuity
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energy

@T

@t
ÿ aHH2T � ÿ L

c

@f
@t
ÿ u�HHT; �3�

conservation of solute components

@�c j

@t
� HH�D jfHHc

j
l ÿ u�HHc

j
l; j � 1; . . . ;N: �4�

In the above equations, HH � �@=@x�î� �@=@y�ĵ is the gradient operator, u� uî� vĵ is the velocity, f
is the volume fraction of liquid, t is time, n0 is the kinematic viscosity, r0 is the reference density, K
is the permeability, p is the pressure, g � gxî� gyĵ is gravity, T is temperature, a is the thermal

diffusivity, L is the latent heat, c is the speci®c heat, �cj is the total concentration of the alloy

component j, D j is the diffusion coef®cient of alloy j in the liquid, c
j
l is the concentration of the alloy

component j in the liquid phase and N is the number of alloy components.

The density r in the body force term is a function of the temperature and of the concentration of

each of the alloy components, i.e.

r � r0 1� bT�T ÿ TR� �
PN
j�1

b j
c �cj

l ÿ c
j
R�

 !
; �5�

where bT � �1=r0��@r=@T�, b j
c � �1=r0��@r=@cj

l�. TR is the reference temperature and c
j
R are the

reference concentrations of the alloy components at r� r0.

The permeability in the momentum equations is expressed in the principal directions perpendicular

and parallel to the primary dendrites, i.e.

K � Kx 0

0 Ky

� �
;

and has been obtained from experimental data and calculations.19,20 The permeability coef®cients are

expressed in terms of the primary dendrite arm spacing d1 and the volume fraction of liquid, f, as

Kx �

1�09� 10ÿ3f3�32d2
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4�04� 10ÿ6 f
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� �6�7336
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2�05� 10ÿ7 f
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0�074�log�1ÿ f�ÿ1 ÿ 1�49� 2�1ÿ f� ÿ 0�5�1ÿ f�2�d2
1; 0�754f < 1;

8>>>><>>>>: �7�

The total concentrations of the alloy components in the mixture, �cj, and the concentrations of the

components in the liquid phase, c
j
l, are related by

�cj � fc
j
l � �1ÿ f��cj

s; �8�
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where �cj
s is the average concentration in the solid phase and, in the case of no diffusion in the solid, is

given by

�cj
s �

1

1ÿ f

�1

f
kjc

j
l df: �9�

Here kj are the equilibrium partition coef®cients.

The model assumes that the liquidus temperature of the alloy in the mushy zone is a function of its

local composition (no undercooling is allowed), which we express in the form

T � F�cj
l�: �10�

We non-dimensionalize the equations using a reference length scale H and a reference thermal

gradient G, which are taken to be of the same order as the primary dendrite arm spacing and the initial

temperature gradient respectively. The reference velocity, time and pressure are given respectively by

U � �gbTGH2�1=2; t � H2

n0

; P � r0H2

t2
;

where g is the magnitude of the gravitational acceleration.

The temperature is non-dimensionalized according to

T � T 0 ÿ TR

GH
;

where T0 denotes the dimensional temperature, and the solute concentrations are non-dimensionalized

with respect to c
j
R.

The governing equations in non-dimensional form are:

continuity
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momentum
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ĝ; �12�

where ĝ is a unit vector in the direction of gravity,

energy
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conservation of solute components
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� 1

Scj
HH�fHHc

j
l ÿ

RT
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u�HHc
j
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The governing non-dimensional parameters in (11)±(14) are

(a) Pr� n0/a, the Prandtl number
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(b) RT � gjbTjGH4=n0a, the thermal Rayleigh number

(c) Da� (1/H2)/K, the Darcy tensor

(d) R
j
s � gjb j

cjc j
RH3=n0D j, the solutal Rayleigh number for solute j

(e) Sc j � n0=D
j, the Schmidt number for solute j

(f) L̂ � L=cGH , the non-dimensional latent heat.

The velocity scale for natural convection has been chosen because it is convenient when body

forces due to buoyancy dominate the convective motion, as is the case in the calculations that will be

presented here. However, in the absence of strong gravity forces, as is the case under microgravity

conditions in space where shrinkage and/or capillary forces drive the convection, this non-

dimensionalization must be replaced by one in which the velocity scale re¯ects the appropriate

convective mechanism.

3. FINITE ELEMENT MODEL

A successful numerical implementation of the solidi®cation model presented in the last section

requires some considerations and organization of the calculations, which we discuss below.

3.1. Computation of Average Concentrations �c
j
s and c

j
l

From (9) we de®ne

Ij �
�l

f
kjc

j
l df � �1ÿ f��c j

s �15�

and, using the trapezoidal rule, we can construct the recursive relation

Ij;n�1 � Ij;n � 1
2
k j�cj;n

l � c
j;n�1
l ��fn ÿ fn�1�; �16�

where the superscript n indicates the time level tn and we have assumed that the equilibrium partition

coef®cients k j are constant during a time step tn 4 t4 tn�1 but vary with concentrations.

If remelting takes place at some point during the process, the values of I j must be obtained from

the solidi®cation history; hence

Ij;n�1 � Hj�fn�1�; �17�
where H j are the histories of solidi®cation for each alloy component, stored at selected values of f at

every node in the mesh that has undergone solidi®cation and interpolated linearly at values of f
different from the saved values.

From (8), (15) and (16), the following recursion relation is obtained that gives concentrations of the

components in the liquid:

c
j;n�1
l � �c j;n�1 ÿ Ij;n ÿ 1

2
kjc

j;n
l �fn ÿ fn�1�

fn�1 � 1
2
kj�fn ÿ fn�1� �18�

during solidi®cation and

c
j;n�1
l � �cj;n�1 ÿ H�fn�1�

fn�1
�19�

during remelting.
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3.2. Calculating Volume Fraction of Liquid, f

The equations for �cj
s and c

j
l derived above require knowledge of the fraction of liquid, f, at time

tn�1 if a node is in the mushy zone. In order to calculate f, we de®ne the liquidus surface of the

multicomponent alloy by writing equation (10) in the form

TL � TM �
PN
j�1

�m jc
j
l; �20�

where TL denotes the liquidus temperature in the mushy zone and TM is the extrapolated melting

temperature of the pure solvent. In general the coef®cients �m j are functions of the local

concentrations of the alloy components, c
j
l. In this work we assume that the �m j are constant.

From (8) and (15) we have

�c j � fc
j
l � I j; �21�

which we multiply by �m j and add over j� 1, . . . , N to obtain

f �

PN
j�1

�m j��c j ÿ I j�

TL ÿ TM

�22�

after substituting equation (20). Notice that because �m j < 0, c
j
l 5 0 and I j 5 0 for all j, satisfaction

of (22) implies the satisfaction of (21) for each j� 1, . . . , N.

In order to obtain a recursive relation for fn�1, we substitute equation (16) into (22) to obtain

fn�1 � An�1 ÿ Bn�1fn

Tn�1
L ÿ TM ÿ Bn�1

; �23�

where

An�1 �PN
j�1

�m j��c j;n�1 ÿ I j;n�; Bn�1 � 1
2

PN
j�1

�m jk j�c j;n�1
l � c

j;n
l �:

When the eutectic temperature TE is reached, solidi®cation proceeds isothermally until all the

remaining eutectic liquid is solidi®ed. Thus, at this stage, heat transfer is controlled by a balance

between the heat released during solidi®cation and thermal diffusion and convection. The strategy

adopted in this case is to set T� TE at those nodes and to use the energy equation with the time-

dependent term @T=@t set equal to zero to calculate the volume fraction of liquid, i.e. we solve

@f
@t
� c

L
�aH2T ÿ u�HHT�: �24�

The convective term in (24) may be neglected for alloys with a small fraction of eutectic liquid.

3.3. The Energy Equation

Fully implicit calculations are impractical because of the complexity of the model, so we resort to

an iterative approach in which already-known values of some variables are used to update the

remaining variables. This causes dif®culties with the energy equation, which becomes unstable if the

latent heat term is not calculated implicitly. The same problem was observed in modelling binary

alloys,14 but in that case a strategy different from the one presented here was employed to resolve it.
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In order to obtain an equation in which the latent heat term is implicit and does not induce stability

problems in the ®nal algorithm, we ®rst differentiate equation (21) with respect to time to obtain

@�cj

@t
� f

@cj
l

@t
� c

j
l

@f
@t
� @I

j

@t
�25�

and then we approximate the time derivative of I j by

@Ij

@t
� ÿk jc

j
l

@f
@t

�26�

using (16). Notice that equation (26) does not hold in the case of remelting. However, numerical

experiments show that no signi®cant errors are incurred with the use of (26) during remelting, as long

as the time step remains reasonably small. On the other hand, the convergence properties of the

algorithm deteriorate signi®cantly and may be lost altogether if the term @I=@t is treated explicitly.

Substituting equation (26) into (25) and rearranging yields

�1ÿ kj�cl

@f
@t
� @�c

j

@t
ÿ f

@c j
l

@t
: �27�

Multiplying by mj � @T=@cj
l and summing over j, we obtain

@f
@t
�

PN
j�1

m j@�c j=@t ÿ f@T=@t

PN
j�1

�1ÿ k j�m jc
j
l

: �28�

Finally, by substituting into (3), we obtain the ®nal form of the energy equation as,

1ÿ L

c

fPN
j�1

�1ÿ k j�m jc
j
l

0BBB@
1CCCA @T@t ÿ aH2T � ÿu�HHT ÿ L

c

PN
j�1

m j@�c j=@t

PN
j�1

�1ÿ k j�m jc
j
l

: �29�

Notice that equation (29) is not uniformly valid throughout the domain because it does not reduce to

(3) when f� 1. Therefore the terms proportional to L/c apply only to points in the mushy zone.

3.4. Finite Element Algorithm

The dependent variables of velocity u, temperature T and total concentration of solute components,

�cj, j � 1; . . . ;N, are calculated from (2), (29) and (4) respectively using a penalty function, Petrov±

Galerkin ®nite element formulation based on bilinear quadrilateral elements. The details of this

procedure are contained in Reference 15 in the context of binary alloys and are not repeated here.

However, we must mention that several other formulations have been implemented in an attempt to

obtain more ef®cient algorithms for three-dimensional calculations. These include methods based on

fractional steps21,22 and stabilized equal-order methods,23,24 which have been implemented with

triangular and rectangular elements. Our results using these methods cannot be regarded as fully

successful at this time and further development is needed before we can report on these efforts.

The rest of the dependent variables, the fraction of liquid, f, the solute concentrations in the liquid,

�cj
l, and the solute concentrations in the solid, �cj

s, are calculated at each node using equation (23),

equation (18) or (19) and equations (15) and (16) respectively. These variables are then interpolated

using bilinear elements for use in the conservation and momentum equations.
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The equations are solved sequentially and a partial iteration is performed within each time step to

obtain convergence. The iteration does not include the momentum equations, which are solved only

once at the beginning of the time step. At time tn all conditions are known. To advance to time

tn�1 � tn � Dt whenever an equation is solved for one of the dependent variables, the latest available

values for all other variables are used. The following path is taken in the calculations.

1. At time tn the dependent variables, un; Tn, etc. are all known.

2. Set t � tn�1 and i� 0, where i is the iteration index.

3. Calculate un�1 from (1), (2) and (5).

4. Calculate Tn�1
�i�1� from (29).

5. Compare Tn�1
�i�1� with TL��c j

l�n�1
�i� �: If Tn�1

�i�1�4 TL��c j
l�n�1
�i� � at a node, calculate fn�1

�i�1� at that node

from (23).

6. For nodes where fn�1
�i�1� < 1, calculate �c j

l�n�1
�i�1� from (18) or (19).

7. Compute ��c j�n�1
�i�1� from (4). (Note that �c j � c

j
l in the all-liquid region.)

8. Convergence check. If at every node we have jfn�1
�i�1� ÿ fn�1

�i� j < e1 and j��c j�n�1
�i�1� ÿ ��c j�n�1

�i� < e2,

then calculate �c
j;n�1
s and I j;n�1 from (15) and from (16) or (17) respectively; set T n�1 � Tn�1

�i�1�,
fn�1 � fn�1

�i�1�, etc.; set n� n� 1 and go to step 2. Otherwise, set i� i� 1 and go to step 4.

The fraction of liquid and the mixture concentrations of the alloy solutes have been determined to

be the most sensitive variables in the calculation and are used therefore to determine convergence (e1

and e2 are user-determined tolerances; in this work, e1� e2� 10ÿ5). On the other hand, the velocities

are not sensitive to small changes in the rest of the variables and are calculated only once per time

step.25 Further details on the algorithm related to the treatment of remelting and solidi®cation at the

eutectic temperature have been given in Reference 15, where the selection of the time step and

meshing strategies have also been discussed.

4. RESULTS AND DISCUSSION

We present here the results of simulations of the solidi®cation of Ni-based superalloys. The boundary

conditions are shown in Figure 1 for a rectangular domain; the same boundary conditions are used in

the domains with variable vertical cross-sections that are introduced later. The calculations were

performed with two alloysÐa ternary mixture of Ni±Al±Ta with a composition of 5�8 wt.% Al,

15�2 wt% Ta and the rest Ni and a quaternary mixture of Ni±Al±Ta±Cr with a composition of 6 wt.%

Al, 6 wt% Ta, 8 wt.% Cr and the rest Ni. The physical properties used in the calculations are given in

Table I.

The simulations start with an all-liquid alloy of the nominal composition in a stable initial vertical

temperature gradient such that at time t� 0 the bottom temperature is slightly above the alloy's

melting temperature TR. At time t� 0 a constant cooling rate r is applied at the bottom of the

container and a constant temperature gradient G is imposed at the top. Also at t� 0 a small random

perturbation is introduced in the solute concentration ®elds in order to excite the convective motion.

The simulations can then proceed until the whole domain is solidi®ed.

4.1. Solidi®cation in a Rectangular Enclosure (Case 1)

First we present simulations in a rectangular domain of width 7 mm and height 20 mm, discretized

with a uniform mesh of 40660 bilinear rectangular elements. We discuss two calculations with the

ternary alloy Ni±Al±Ta of the above-mentioned composition, solidi®ed with an initial temperature

gradient G� 2000 K mÿ1 at the rate r� 7 0�28 K sÿ1.
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Results for Case 1 are shown in Figures 2 and 3 after 80 and 200 s of solidi®cation respectively.

Figure 2(a) shows the volume fraction of liquid and indicates that the leading part of the mushy zone

has advanced about 7�5 mm during this time; the bottom of the container is about 50% solid. A very-

well-de®ned channel can be observed close to the midsection, which is all liquid starting about 3 mm

from the bottom. Figure 2(b) shows the velocity ®eld in the solidifying alloy. A plume is emanating

from the channel into the all-liquid zone, causing two relatively strong convection cells in the liquid

that entrain into the mushy zone to feed the plume. The maximum velocity in the liquid is of the order

of 4�6 mm sÿ1. Notice that the plume turns before reaching the top of the container. This is due to the

stabilizing effect of the temperature gradient, which eventually stops the upward motion and forces

the ¯uid to turn. The ¯uid motion within the mushy zone causes convective transport of lighter

aluminium-rich ¯uid to the channel, as shown in Figure 2(c), lowering the density of the ¯uid within

the channel and causing it to rise. Sharp concentration gradients develop along the channel walls

between the aluminium-rich plume and the depleted neighbouring mushy zone, as shown in Figure

2(c). The effect of convection in the all-liquid zone can also be observed. The other component, Ta,

does not contribute to convection since it increases the density of the liquid and is therefore a

stabilizing agent when solidi®cation is effected from below.

Figure 3(a) shows that after 200 s the leading part of the mushy zone has advanced about 17 mm

and four channels are now evidentÐtwo along the walls of the mould and two in the interior of the

casting. The latter have turned to the left and eventually merge with the channel developed along the

left wall. The channel in the middle remains almost completely liquid from 3 to 7 mm high, but it is

Figure 1. Rectangular domain showing initial and boundary conditions
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closing from there up, leaving a pocket of liquid behind. If this process continues, eventually no

liquid can ¯ow to this pocket to offset the shrinkage due to the density change of solidi®cation; this

leads to the formation of porosity. Our model in its present state is not capable of modelling such

situations; however, an extension is currently being implemented and the capability will be available

in the near future.

In Figure 3(b) we have shown only the ¯ow in the channels within the mushy zone; ¯ow in the

central channel is still signi®cant, with a maximum speed of 0�2 mm sÿ1, and accounts for the strong

segregation and neighbouring depletion of aluminium observed in Figure 3(c). The interior channel

on the right shows negligible convection motion and is therefore less segregated. The upper parts of

the channels next to the walls show upward velocities and liquid entrainment into the mushy zone.

Figure 3(c) shows that the aluminium component in the remaining liquid has been enriched by the

convection. The bottom of the container shows some aluminium depletion.

This example illustrates the basic mechanisms in the formation of freckles and general

macrosegregation in vertically solidi®ed casts; in particular, the strongly non-linear interactions

between the ¯ow ®eld, concentration ®elds and volume fraction of liquid in the mushy zone are

apparent. The next example serves to illustrate the interaction between the temperature- and solutal-

Table I. Thermodynamic and transport properties used in simulations

Property Reference(s)

Reference concentrations
Case 1: cAl

R � 5�8 wt.% Al; cTa
R � 15�2 wt.% Ta Ð

Cases 2±5: cAl
R � 6�0 wt.% Al; cTa

R � 6�0 wt.% Ta; cCr
R � 8�0 wt.% Cr Ð

Reference temperatures
Case 1: TR � 1685 K 26
Cases 2±5: TR � 1691 K 26, 27

Eutectic temperature: TE � 1560 K 28
Extrapolated melting point of solvent:a TM � 1754 K Ð
Equilibrium partition ratios

Case 1: kAl � 0�54; kTa � 0�48 28
Cases 2±5: kAl � 0�89; kTa � 0�61; kCr � 1�0 29

Changes of liquidus temperature (mj � @TL=@c
j
l)

mAl � ÿ5�17 K (wt.% Al)ÿ1 27
mCr � ÿ2�11 K (wt.% Cr)ÿ1 27
mTa � ÿ2�55 K (wt.% Ta)ÿ1 27

Thermal expansion coef®cient: bT � ÿ1�15610ÿ4 Kÿ1 30
Solutal expansion coef®cients
bAl

c � ÿ2�26610ÿ2 (wt.% Al)ÿ1 30

bCr
c � ÿ2�26610ÿ3 (wt.% Cr)ÿ1 30

bTa
c � 3�8261073 (wt.% Ta)ÿ 1 30

Viscosity: m� 4�90610ÿ3 N s mÿ 2 31
Speci®c heat: c� 660 J kgÿ1 Kÿ 1 31
Latent heat: L� 2�906105 J kgÿ 1 31
Thermal conductivity:b k� 80 W Kÿ1 mÿ1 32
Density

Case 1: r0� 7365 kg mÿ3 30
Cases 2±5: r0� 6900 kg mÿ3 30

Diffusion coef®cient in liquid: D� 5610ÿ9 m2 sÿ1 Ð

aExtrapolated melting point of solvent is based on the liquidus temperature given by TL � 1685ÿ 2�11cCr
l ÿ 2�55�cTa

l ÿ 15�18�
ÿ5�17�cal

l ÿ 5�81�, where 1685 K is from Reference 26 for Ni±15�18 wt.% Ta±5�81 wt.% Al and the coef®cients are from
Reference 27.
bExtrapolation of the thermal conductivity of solid nickel to its melting point.32
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Figure 2. Solidi®cation of Ni±5�8 wt.% Al±15�2 wt.% Ta in a rectangular enclosure after 80 s: (a) fraction of liquid; (b) velocity ®eld (maximum velocity 4�6 mm sÿ 1), (c)
mixture concentration of wt.% Al. Dimensions in metres
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Figure 3. Solidi®cation of Ni±5�8 wt.% Al±15�2 wt.% Ta after 200 s: (a) fraction of liquid; (b) velocity ®eld in mushy zone (maximum displayed velocity 0�7 mm sÿ 1); (c) mixture
concentration of wt.% Al. Dimensions in metres
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driven ¯ows and to emphasize the necessity of an accurate database if calculations of this type are to

be used as a predicting tool. In particular, the importance of using accurate values of the partition

coef®cients kj is illustrated.

In the simulations of Figures 2 and 3, kAl� 0�54 (obtained from Reference 29) was used; however,

it is not clear that this represents an accurate estimate of kAl and some evidence exists supporting

higher values of the equilibrium partition ratio.29 A calculation using kAl� 0�75 and keeping the rest

of the parameters the same as before is shown in Figure 4 after 200 s of solidi®cation. Figure 4(a)

shows the ¯ow ®eld and the presence of four channels where liquid is being ejected from the mushy

zone, which has reached only 7 mm during this time. The ¯ow entrains deep into the all-liquid region

in only one of these locations; the other three turn quickly above the mushy zone and the ¯ow in the

liquid is dominated by two large cells streaming from the dominant channel. The concentration of

aluminium in Figure 4(b) shows that a channel has formed and merged with the main channel deep in

the mushy zone and that a channel started forming later than the others closer to the top of the mushy

zone. These channels are relatively straight and the possibility of them bending and migrating across

the domain, as in Figure 3(c), does not occur. The magnitude of the macrosegregation is also much

smaller than in the previous case and overall convection is weaker, as expected, with a maximum

velocity of 0�25 mm sÿ1.

Figure 4. Solidi®cation of Ni±5�8 wt.% Al±15�2 wt.% Ta with kAl � 0�75 after 200 s: (a) ¯ow ®eld (maximum velocity
0�25 mm sÿ 1), (b) mixture concentration of wt.% Al. Dimensions in metres
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We now change kAl to 0�77 for the same calculation. Results at 200 s are given in Figure 5 and

show very signi®cant changes. In Figure 5(a) none of the four channels in the mushy zone is strong

enough to drive the ¯uid in the all-liquid region; convection is relegated to the upper part of the

mushy zone and a small layer in the overlying liquid. Four channels started forming early on and

remain very stable (in fact, they persist until solidi®cation is complete), causing very straight and

weakly segregated streaks that run through almost the entire casting. The maximum velocities here

are of the order of 0�1 mm sÿ1 and segregation only amounts to less than 0�8 wt.% of the initial

concentration of aluminium. This example underscores the importance of accurately measuring the

equilibrium partition coef®cients; in this case a 2�5% change in the value of kAl has caused an

important change in the mode of convection in the melt during solidi®cation and in the

macrosegregation patterns.

4.2. Solidi®cation in Enclosures with Smoothly Varying Geometry (Cases 2 and 3)

We now turn our attention to the effect of geometry on the solidi®cation process. Two simulations,

one in a smoothly converging enclosure and the other in a diverging enclosure, are shown. Here the

quaternary Ni±Al±Ta±Cr alloy is solidi®ed. The temperature gradient is 5000 K mÿ1 and the cooling

Figure 5. Solidi®cation of Ni±5�8 wt.% Al±15�2 wt.% Ta with kAl � 0�77 after 200 s: (a) ¯ow ®eld (maximum velocity
0�1 mm sÿ 1), (b) mixture concentration of wt.% Al. Dimensions in metres
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rate at the bottom is r� 7 0�28 K sÿ1. Figure 6 shows results for a mould contracting from 14 mm

at the bottom to 7 mm at the top. At t� 400 s the mushy zone has already reached the top of the

container. Figure 6(a) shows the mesh, Figure 6(b) shows the concentration of aluminium and Figure

6(c) shows a detail of the velocity ®eld at the top of the container, where a zero-normal-stress

boundary condition was applied. Note that the magnitude of the velocities is very small because the

fraction of liquid is already less than 0�5. The ®rst channel starts approximately 4 mm from the

Figure 6. Solidi®cation of Ni±6 wt.% Al±6 wt.% Ta±8 wt.% Cr in a mould contracting smoothly upwards after 200 s: (a)
geometry and mesh; (b) mixture concentration of wt.% Al; (c) detail of ¯ow ®eld at top of container (maximum velocity

4610ÿ 4 mm/sÿ 1; fraction of liquid at top, 0�45). Dimensions in metres
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Figure 7. Solidi®cation of Ni±6 wt.% Al±6 wt.% Ta±8 wt.% Cr in a mould diverging smoothly upwards after 200 s: (a)
geometry and mesh; (b) mixture concentration of wt.% Al; (c) ¯ow ®eld (maximum velocity 0�5 mm sÿ 1). Dimensions in

metres
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Figure 8. Solidi®cation of Ni±6 wt.% Al±6 wt.% Ta±8 wt.% Cr in a mould with a sudden contraction after 200 s: (a)
concentrations above 6% of wt.% Al in the mixture (positive segregation only); (b) ¯ow ®eld with detail at the top of the mushy

zone (maximum velocity 0�2 mm sÿ 1). Dimensions in metres
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Figure 9. Solidi®cation of Ni±6 wt.% Al±6 wt.% Ta±8 wt.% Cr in a mould with a sudden expansion after 200 s: (a) mixture
concentration of wt.% Al; (b) ¯ow ®eld with detail at top of mushy zone (maximum velocity 0�4 mm sÿ 1). Dimensions

in metres
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bottom and more channels start developing later at approximately 14 mm from the bottom. This is

possibly due to the fact that the solidi®cation speed changes as the container becomes smaller and

less energy needs to be extracted to cool the casting. The velocity ®eld in Figure 6(c) shows that all

four channels at the top are of about equal strength and within the mushy zone. In this case the

channels have aligned themselves towards the right wall of the container owing to the convection in

the all-liquid region during solidi®cation.

Figure 7 shows the mesh and results at t� 400 s for a mould expanding smoothly from 7 mm at the

bottom to 14 mm at the top. Segregation is con®ned mainly to the side walls (Figure 7(b)); however,

as shown in Figure 7(c), the ¯ow appears to be driven mainly by natural convection along the walls

and almost no interaction with the mushy zone is apparent, except near the side walls. Notice also that

the leading part of the mushy zone has only reached approximately 13 mm from the bottom because

less energy can be extracted through the smaller bottom surface and hence the speed of solidi®cation

is much lower in this case.

4.3. Solidi®cation in Enclosures with Abrupt Changes in Geometry (Cases 4 and 5)

The effect that abrupt changes in geometry have on the convection during solidi®cation is

illustrated using the same alloy and solidi®cation conditions as in Section 4.2, with abrupt expansion

and contraction part way up the container. The calculations were performed using a square regular

mesh of size Dx � Dy � 0�35 mm.

Results after 200 s of solidi®cation are shown in Figures 8 and 9, where the geometry of the

container is de®ned. In Figure 8(a), which shows regions with only positive segregation of

aluminium, the contraction enhances the formation of internal channels. As the mushy zone advances

towards the step, convection is very strong in the neck but only one of the plumes escapes to the

liquid and the others turn back, as shown in detail in Figure 8(b). Finally, Figure 9(a) shows that an

expansion acts as an inhibitor to the formation of internal channels; the segregation pattern in the

bottom half was broken by the sudden expansion and segregation relegated to the corners and the

walls. However, after a while, channels develop again. The convective ®eld in Figure 9(b) shows that

convection is weak and does not penetrate the mushy zone. In fact, the ¯ow in all 10 upward-¯owing

locations turns very close to the mushy zone, creating small recirculating cells similar to those shown

in Figures 5(a) and 8(b).

5. CONCLUSIONS

A ®nite element model of the solidi®cation of dendritic multicomponent alloys has been constructed

to study macrosegregation resulting from the convection that develops in the melt during the

solidi®cation process. The two-dimensional model has allowed us to study in detail the mechanisms

that produce convection in the melt and the effect of convection on macrosegregation. In particular,

we have been able to determine that freckles are a direct consequence of ¯ow instabilities in the

mushy zone. Given the sensitivity of the resulting convection to changes in some of the physical

parameters, we have demonstrated the need for a comprehensive database in the future as models of

this type are used in the design of casting processes. The model has been extended to three

dimensions and preliminary calculations show that the two-dimensional model is at least qualitatively

correct in its predictions.
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